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Abstract

Based on the generalized Lekhnitskii formulation and Mellin transform, the thermo-electro-elastic fields of a piezo-
electric bonded wedge are investigated in this paper. From the potential theory in a wedge-shaped region, a general
form of the temperature change is proposed as a particular solution in the generalized Lekhnitskii formulation. The
emphasis is on the singular behavior near the apex of the piezoelectric bonded wedge, including singularity orders
and angular functions, which can be computed numerically. The interface between two materials can be either perfectly
bonded, namely type A, so that the continuity of electric displacements holds, or a thin electrode, namely type B, so that
the electric potential is grounded. Case studies of PZT-5H/PZT-4 and graphite-epoxy/PZT-4 bonded wedges reveal
that, in most cases, the type B continuity condition has more severe singularities than type A due to the mixed boundary
point of the electrostatics at the apex of the wedge. The results of this study show that the reduction or disappearance of
singularity orders is possible through the appropriate selection of poling/fiber orientations and wedge angles.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Piezoelectric materials are widely used in actuators due to their electro-mechanical coupling behavior
(Uchino, 1997). Polarized piezoceramics are among the most frequently used piezoelectric materials, usu-
ally being bonded to other materials. In many piezoelectric applications, the piezoceramics or fibrous rein-
forced composites are bonded together to form sharp corners or wedges, as shown in Fig. 1, resulting in
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Fig. 1. The piezoelectric bonded wedge.
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stress singularities due to geometric and material discontinuities. Because of the brittle properties of the
piezoceramics and fibrous composites, the cracks frequently initiate from the apex of the wedges if the de-
vices are operated in severe environments or under strenuous mechanical, electrical or thermal loading
conditions.

Several mathematical tools, such as the eigenfunction expansion (Williams, 1952), Mellin transform
(Bogy, 1968, 1972; Ma and Hour, 1989), complex potential functions (Theocaris, 1974; Delale, 1984;
Chen and Nisitani, 1992; Chen, 1998; Chue and Liu, 2001) have been applied in solving the stress singu-
larity orders in isotropic or anisotropic bonded wedges.

The thermal effects have also been investigated by the Mellin transform (Yang and Munz, 1994; Ma,
1995). These pioneering researchers found that the stress singularity orders are functions of wedge angles,
material combinations and the boundary conditions at the edges. They are independent of the applied
mechanical and thermal loadings and geometric conditions at more remote areas.

With regard to singular behavior in piezoelectric bonded wedges, few reports can be found in the avail-
able literature. Xu and Rajapakse (2000) used the generalized Lekhnitskii formulation (Lekhnitskii, 1963)
associated with the eigenfunction expansion method to solve the in-plane singularity orders of a piezoelec-
tric composite wedge or junction. Chue and Chen (2002) extended Xu and Rajapakse�s approach to solve
the stress singularities of a piezoelectric composite wedge under generalized plane deformation. The anti-
plane singularities of a piezoelectric wedge were also investigated by the Mellin transform (Chue and Chen,
2003) and by eigenfunction expansion (Chen and Chue, 2003). The previous studies focused on piezoelectric
wedges with perfect bonding, i.e., the tractions, displacements, normal components of electric displace-
ments and electric potentials are continuous across the interface. In many piezoelectric applications, there
exists a thin electrode between two piezoelectrics. The continuity conditions of the electrostatics fields are
different for this type of wedge, and, until now, no research has been done on piezoelectric wedges with
these kinds of continuity conditions.

In many applications of piezoelectric devices, thermal effects could be important because of the exis-
tences of a high temperature gradient and mismatch of thermal properties. Failures such as cracks could
occur at high stress concentration locations. Some research has been done on thermal stresses of cracks
in piezoelectric medium (Yu and Qin, 1996; Lu et al., 1998; Qin and Mai, 1999; Qin, 2001; Niraula and
Noda, 2002; Shang et al., 2002, 2003). Theses studies revealed that the crack tips exhibit the conventional
square root singularity. However, to the best of the author�s knowledge, the thermal stresses in piezoelectric
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wedges have never been investigated before. In this paper, the generalized Lekhnitskii formulation conjunc-
tion with the Mellin transform is used to study the thermo-piezoelectricity in the piezoelectric bonded
wedge. The elastic and electrical boundary conditions at the edges are traction free and electrically insu-
lated, respectively. Two types of continuity conditions across the interface are considered. The first case
is that two piezoelectric materials are bonded perfectly while the second case is that there exists a thin elec-
trode between two piezoelectric materials. Based on the potential theory with regard to the wedge-shaped
region, a general form of the temperature change is put forward as a particular solution in the generalized
Lekhnitskii formulation. Some reduced cases are compared with the existing literature to ensure the validity
of the results. The results of this study provide practical information for designing more reliable piezoelec-
tric devices.
2. Basic formulations

Consider a piezoelectric polarized in x–z plane. The constitute equations are
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where eij and cij are strains, rij and sij are stresses, Ei are electric fields, Di are electric displacements, sij are
elastic constants, gij are piezoelectric constants, bij are impermittivities, ai are coefficients of thermal expan-
sion, ki are pyroelectric constants, T is temperature change from a reference temperature, hi are heat fluxes,
Hi are heat intensities and kij are coefficients of heat conductivity. Using the concept of plane strain, the
constitutive equations can be reduced to the form
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~ai ¼ ai �
s2ia2
s22

ð3:4Þ

~ki ¼ ki �
gi2a2
s22

ð3:5Þ
The equilibrium equations, strain–displacements relations and compatibility relations are
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where u, w are displacements, and U is electric potential.
Following the standard procedure of Lekhnitskii formulation (Lekhnitskii, 1963; Chue and Chen, 2002),

we can introduce Airy�s stress function F and the electric displacement function / defined as
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The governing equations of the thermo-piezoelectricity are
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where
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The general solutions of Eqs. (8) can be decomposed into homogeneous and particular solutions. The
homogeneous solutions of the stresses and electric displacements can be expressed in terms of three analytic
complex functions f1ðz1Þ, f2ðz2Þ and f3ðz3Þ, i.e.,
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where the subscript h denotes the homogeneous solutions and the prime denotes the derivative with respect
to the argument,
x1 ¼ � l3ðl1Þ
l2ðl1Þ

; x2 ¼ � l3ðl2Þ
l2ðl2Þ

; x3 ¼ � l3ðl3Þ
l4ðl3Þ

ð11Þ

zi ¼ xþ liz ð12Þ

and li are the roots of the following characteristic equation
l4ðlÞl2ðlÞ � l23ðlÞ ¼ 0 ð13Þ

with
l4ðlÞ ¼ ~s11l4 � 2~s14l3 þ ð2~s13 þ ~s44Þl2 � 2~s34lþ ~s33 ð14:1Þ

l3ðlÞ ¼ ~g11l
3 � ð~g31 þ ~g14Þl2 þ ð~g13 þ ~g34Þl� ~g33 ð14:2Þ

l2ðlÞ ¼ �~b11l
2 þ 2~b13l� ~b33 ð14:3Þ
It can be shown that the six roots of l are complex and distinct (Lekhnitskii, 1963). The homogenous solu-
tions of displacements and electric potential are
uh ¼ 2Re½a1f1ðz1Þ þ a2f2ðz2Þ þ a3f3ðz3Þ� ð15:1Þ

wh ¼ 2Re½b1f1ðz1Þ þ b2f2ðz2Þ þ b3f3ðz3Þ� ð15:2Þ

Uh ¼ 2Re½c1f1ðz1Þ þ c2f2ðz2Þ þ c3f3ðz3Þ� ð15:3Þ

where
a1 ¼ ~s11l2
1 þ ~s13 � ~s14l1 þ ~g11l1x1 � ~g31x1 ð16:1Þ
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a2 ¼ ~s11l2
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The particular solutions depend on the heat conduction problem. From the basic equations (Eqs. (1.2),
(4.4) and (5.3)), the governing equations for heat conduction are
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o
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o
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We can introduce a complex function fp(zp) related to the temperature change T as
T ¼ 2Re½f 0
pðzpÞ� ð20Þ
where the subscript p denotes the particular solution, and
zp ¼ xþ lpz ð21Þ

with lp the root of
k33l2 þ 2k13lþ k11 ¼ 0 ð22Þ

The particular solutions of the electro-elastic fields can be expressed as
rxp ¼ 2Re½l2
pf1ðlpÞf 0

pðzpÞ� ð23:1Þ

rzp ¼ 2Re½f1ðlpÞf 0
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Dxp ¼ 2Re½lpf2ðlpÞf 0
pðzpÞ� ð23:4Þ

Dzp ¼ �2Re½f2ðlpÞf 0
pðzpÞ� ð23:5Þ

up ¼ 2Re½apfpðzpÞ� ð24:1Þ

wp ¼ 2Re½bpfpðzpÞ� ð24:2Þ

Up ¼ 2Re½cpfpðzpÞ� ð24:3Þ
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where
f1ðlpÞ ¼
�l1ðlpÞl3ðlpÞ þ l2ðlpÞl�2ðlpÞ

l4ðlpÞl2ðlpÞ � l23ðlpÞ
ð25:1Þ

f2ðlpÞ ¼
l4ðlpÞl1ðlpÞ � l3ðlpÞl�2ðlpÞ

l4ðlpÞl2ðlpÞ � l23ðlpÞ
ð25:2Þ

ap ¼ ~s11l2
pf1 þ ~s13f1 � ~s14lpf1 þ ~g11lpf2 � ~g31f2 ð26:1Þ

bp ¼ ~s13lpf1 þ
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ð26:2Þ

cp ¼ ~g11l
2
pf1 þ ~g13f1 � ~g14lpf1 � ~b11lpf2 þ ~b13f2 ð26:3Þ
In Eqs. (25), the polynomials l�2ðlÞ and l1ðlÞ are

l�2ðlÞ ¼ �~a1l

2 þ ~a4l� ~a3 ð27:1Þ

l1ðlÞ ¼ �~k1lþ ~k3 ð27:2Þ

The general solutions of electro-elastic fields are the combinations of Eqs. (10), (15), (24) and (25).
3. The Mellin transform solutions

The Mellin transform pairs of the electro-elastic fields are defined as
ûðs; hÞ ¼
Z 1
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where ð�̂Þ denotes the Mellin transform of the quantity (•), s is the Mellin transform parameter and c is a
real number which makes the inverse integral exist. The following regularity conditions hold
rsþ2rijjr!0 ¼ 0; rsþ1ujr!0 ¼ 0; rsþ1wjr!0 ¼ 0 ð29:1Þ

rsþ2rijjr!1 ¼ 0; rsþ1ujr!1 ¼ 0; rsþ1wjr!1 ¼ 0 ð29:2Þ
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rsþ2Dijr!0 ¼ 0; rsþ1Ujr!0 ¼ 0 ð30:1Þ

rsþ2Dijr!1 ¼ 0; rsþ1Ujr!1 ¼ 0 ð30:2Þ

In addition, with respect to a fixed h, complex functions f̂ iðsÞ and �̂f iðsÞ (i = 1,2,3,p) are defined as
f̂ iðsÞ ¼
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Z 1

0

�f ið�ziÞ�zsi d�zi ð31:2Þ
where the over-bar denotes the conjugate of the complex function. From the use of Eqs. (12), (21) and the
integration by parts, Eqs. (31) become
Z 1

0
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f̂ iðsÞ
nsþ1
i

ð32:1Þ
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i
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where x = rcosh, y = rsinh and ni = cosh + isinh. In Eqs. (32.3) and (32.4), we have used the conditions
that
zsþ1
i fiðziÞj10 ¼ 0 ð33:1Þ

�zsþ1
i

�f ið�ziÞj
1
0 ¼ 0 ð33:2Þ
By using Eqs. (32), the Mellin transforms of the electro-elastic fields are
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D̂z ¼ ðsþ 1Þ x1
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1
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2
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nsþ1
2

f̂ 2 þ
a3
nsþ1
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�a2
�n
sþ1
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sþ1

1

�̂f 1 þ
�c2
�n
sþ1

2

�̂f 2 þ
�c3
�n
sþ1

3

�̂f 3 þ
�cp
�n
sþ1

p

�̂f p ð35:3Þ

T̂ ¼ �ðsþ 1Þ 1

nsþ2
p

f̂ p þ
1

�n
sþ2

p

�̂f p

" #
ð36Þ
The functions f̂ kðsÞ and �̂f kðsÞ, k = 1,2,3, remain unknowns.
4. Statement of problem

Consider a piezoelectric bonded wedge, as shown in Fig. 1. Two coordinate systems, x–z and r–h coor-
dinates, are used to define the wedge angles h1, h2 and h3 and the principal axes of materials. The orienta-
tions of the boundary edges are located at h = h2 and h3 while the interface is at h1. Material 1 may be either
piezoceramic or a fibrous-reinforced composite, while material 2 always refers to a piezoelectric. The poling
and fiber orientation is in x–z plane and makes an angle b with z-axis as shown in Fig. 2. There is no pie-
zoelectric coupling effect in the fibrous-reinforced composite. It is considered as a perfectly electric insulated
body because of the assumption that it�s impermittivity is much larger than the piezoceramic�s. There is no
electrostatics response inside the fibrous-reinforced composite so that it is modeled by the traditional Lekh-
nitskii formulation, i.e., only two analytic complex functions are required. The transformed solution has

four unknown functions f̂ 1ðsÞ, f̂ 2ðsÞ, �̂f 1ðsÞ and �̂f 2ðsÞ.
x

 z

poling or fiber axis  

β

Fig. 2. The orientation of poling of piezoelectric or fiber of anisotropic composite.
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The boundary edges of the piezoelectric are traction free and electrically insulated, i.e., at h = h2 and
h = h3:
rn ¼ rxsin
2hþ rzcos

2h� 2sxz sin h cos h ¼ 0 ð37:1Þ

st ¼ �rx sin h cos hþ rz sin h cos hþ sxzðcos2h� sin2hÞ ¼ 0 ð37:2Þ

Dn ¼ �Dx sin hþ Dz cos h ¼ 0 ð37:3Þ

where rn is the traction normal to the interface, st is the traction tangential to the interface and Dn is the
normal component of the electric displacement across the interface. If material 1 is a fibrous-reinforced
composite, the boundary conditions at h = h2 are Eqs. (37.1) and (37.2). At the interface, two types of con-
tinuity conditions, namely type A and B, are considered in this paper:

Type A: The two materials are perfectly bonded. For this type of boundary condition, the tractions,
normal component of electric displacements, displacements and electric potential are continuous across
the bonded surface, i.e., at h = h1,
rð1Þ
n ¼ rð2Þ

n ð38:1Þ

sð1Þt ¼ sð2Þt ð38:2Þ

Dð1Þ
n ¼ Dð2Þ

n ð38:3Þ

uð1Þ ¼ uð2Þ ð38:4Þ

wð1Þ ¼ wð2Þ ð38:5Þ

Uð1Þ ¼ Uð2Þ ð38:6Þ

where the superscripts 1 and 2 denote materials 1 and 2, respectively. If material 1 is a fibrous-reinforced
composite, the continuity conditions are Eqs. (38.1), (38.2), (38.4), (38.5) and
Dð2Þ
n ¼ 0 ð38:7Þ
Type B: A thin electrode exists between the two materials. The electrode is very thin so that it�s thickness
and stiffness can be ignored. For piezoelectric–piezoelectric bonded wedges, the tractions and displacements
are continuous across the bonded surface and the electric potentials of the two materials are grounded at
the interface, i.e., at h = h1,
rð1Þ
n ¼ rð2Þ

n ð39:1Þ

sð1Þt ¼ sð2Þt ð39:2Þ

uð1Þ ¼ uð2Þ ð39:3Þ

wð1Þ ¼ wð2Þ ð39:4Þ

Uð1Þ ¼ 0 ð39:5Þ

Uð2Þ ¼ 0 ð39:6Þ
If material 1 is a fibrous-reinforced composite, the continuity conditions are Eqs. (39.1)–(39.4) and (39.6).
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5. Procedure for the solution

Before going into the solution of the thermo-piezoelectricity, the temperature change T should first be
investigated. Since the heat conduction problem is defined in a wedge-shaped region, it is reasonable to
assume T to have the form
T ¼ ½1� Hðr � rjÞ�rmjP jðH;mjÞ þ Hðr � rjÞrnjQjðH; njÞ ð40Þ

where the repeated index j indicates the summation, H(r � rj) is the Heaviside unit step function, mj and nj
are the eigenvalues of the heat conduction wedge, Pj and Qj are angular functions corresponding to mj and
nj, respectively, and H = h � (h2 � h3)/2. It should be noted that the 2-dimensional heat conduction prob-
lem can be correspondent to the antiplane problem in elasticity. Ma and Hour (1989) have proved that the
antiplane stress singularity orders must be real in an anisotropic wedge. The same conclusion that both mj

and nj are real can also be made. In addition, Pj (H,mj) and Qj (H,nj) are integrable with respect to H on
[�(h2 + h3)/2, (h2 + h3)/2], so that for each mj and nj, they can expand by means of the Fourier series, i.e.,
T ¼ ½1� Hðr � rjÞ�rmj aj0ðmjÞ þ ajkðmjÞ cos
2kpH
h2 þ h3

� �
þ bjkðmjÞ sin

2kpH
h2 þ h3

� �� �

þ Hðr � rjÞrnj cj0ðnjÞ þ cjkðnjÞ cos
2kpH
h2 þ h3

� �
þ djkðnjÞ sin

2kpH
h2 þ h3

� �� �
ð41Þ
where ajk, bjk, cjk and djk are coefficients of the Fourier series. Therefore, the complex function f 0
p(zp) can be

written as � � � �� �

f 0
p ¼ ½1� Hðr � rjÞ�rmj Aj0 þ Ajk cos

2kpH
h2 þ h3

þ Bik sin
2kpH
h2 þ h3

þ Hðr � rjÞrnj Cj0 þ Cjk cos
2kpH
h2 þ h3

� �
þ Dik sin

2kpH
h2 þ h3

� �� �
ð42Þ
where Ajk, Bjk, Cjk, Djk are complex functions and
2Re½Ajk� ¼ ajk; 2Re½Bjk� ¼ bjk; 2Re½Cjk� ¼ cjk; 2Re½Djk� ¼ dik ð43Þ

The combination of Eqs. (32) and (42) yields
f̂ pðsÞ ¼ �
nsþ2
p rmjþsþ2

j

ðsþ 1Þðmj þ sþ 2Þ Aj0 þ Ajk cos
2kpH
h2 þ h3

� �
þ Bjk sin

2kpH
h2 þ h3

� �� �

þ
nsþ2
p rnjþsþ2

j

ðsþ 1Þðnj þ sþ 2Þ Cj0 þ Cjk cos
2kpH
h2 þ h3

� �
þ Djk sin

2kpH
h2 þ h3

� �� �
ð44:1Þ

�̂f pðsÞ ¼ �
�n
sþ2

p rmjþsþ2
j

ðsþ 1Þðmj þ sþ 2Þ Aj0 þ Ajk cos
2kpH
h2 þ h3

� �
þ Bjk sin

2kpH
h2 þ h3

� �� �

þ
�n
sþ2

p rnjþsþ2
j

ðsþ 1Þðnj þ sþ 2Þ Cj0 þ Cjk cos
2kpH
h2 þ h3

� �
þ Djk sin

2kpH
h2 þ h3

� �� �
ð44:2Þ
In Eqs. (44), the following two conditions:
Re½mj þ sþ 2� > 0 ð45:1Þ

Re½nj þ sþ 2� < 0 ð45:2Þ

must be hold for the existence of the Mellin transform.
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For the temperature field under a specific heat conduction problem in a piezoelectric wedge, it is crucial
to determine the coefficients Ajk, Bjk, Cjk and Djk. For example, consider a specific temperature field
T ¼ T 0½1� Hðr � r0Þ� ð46Þ

Eq. (46), which was used to determine the regular stress term of an isotropic bonded wedge (Yang and
Munz, 1994), can be obtained from Eq. (42) by setting k = j = 0, m0 = 0, Aj0 = T0/2 and Cjk = Djk = 0.
Then Eqs. (44) become
f̂ pðsÞ ¼ �
T 0n

sþ2
p rsþ2

0

2ðsþ 1Þðsþ 2Þ ð47:1Þ

�̂f pðsÞ ¼ �
T 0

�n
sþ2

p rsþ2
0

2ðsþ 1Þðsþ 2Þ ð47:2Þ
Once f̂ pðsÞ and �̂f pðsÞ are assigned, the simultaneous equations in matrix form
Mf ¼ fp ð48Þ

can be obtained by substituting Eqs. (34) and (35) into the boundary conditions (Eqs. (37)) and continuity
conditions (Eqs. (38) for type A or Eqs. (39) for type B). In Eq. (48), the matrix M consists of the material
properties, wedge angles and the Mellin transformed parameter s. The dimension of M is 12 · 12 for pie-
zoelectric–piezoelectric bonded wedge and 10 · 10 for composite–piezoelectric bonded wedge. The vector fp
consists of the particular terms f̂ pðsÞ and �̂f pðsÞ. The form of the vector f is
f ¼ f̂
ð1Þ
1 f̂

ð1Þ
2 f̂

ð1Þ
3

�̂f
ð1Þ
1

�̂f
ð1Þ
2

�̂f
ð1Þ
3 f̂

ð2Þ
1 f̂

ð2Þ
2 f̂

ð2Þ
3

�̂f
ð2Þ
1

�̂f
ð2Þ
2

�̂f
ð2Þ
3

h it
ð49:1Þ
for piezoelectric–piezoelectric bonded wedges and
f ¼ f̂
ð1Þ
1 f̂

ð1Þ
2

�̂f
ð1Þ
1

�̂f
ð1Þ
2 f̂

ð2Þ
1 f̂

ð2Þ
2 f̂

ð2Þ
3

�̂f
ð2Þ
1

�̂f
ð2Þ
2

�̂f
ð2Þ
3

h it
ð49:2Þ
for composite–piezoelectric bonded wedges. In Eqs. (49), t denotes transpose of the vector. For general pur-
poses, the following derivation is for the case of piezoelectric–piezoelectric bonded wedges. Based on Cra-
mer�s rule, the solutions of Eq. (48) can be obtained and the transformed electro-elastic fields can be
expressed as
r̂ðkÞ
ij ðs; hÞ ¼

sþ 1

DðsÞ F
ðkÞ
ij ðs; hÞ ð50:1Þ

D̂
ðkÞ
i ðs; hÞ ¼ sþ 1

DðsÞ G
ðkÞ
i ðs; hÞ ð50:2Þ
where D(s) is the determinant of the matrix M and the superscript k = 1,2 denote the kth material. In
Eqs. (50), the exact forms of the functions F ðkÞ

ij ðs; hÞ and GðkÞ
i ðs; hÞ are difficult to obtain. They can be

computed by numerical methods. The stresses and electric displacements can be obtained by applying Mel-
lin inverse transform to Eqs. (50). Before calculating the Mellin inverse integral, we first define the inverse
integral path parameter c. By knowing the poles of Eqs. (50), i.e., the zeros of D(s), the inverse transform
can be investigated by the residue theorem. Assume that the displacements and stresses have the following
forms:
u;w / r�s0�1 ð51:1Þ

rij / r�s0�2 ð51:2Þ
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where s 0 is a complex number. From the regularity conditions of Mellin transform (see Eqs. (29) and (30)),
we have
r ! 0; c > Re½s0� ð52:1Þ

r ! 1; c < Re½s0� ð52:2Þ

where c = Re[s]. Also, from the assumption of finite values of displacements when r ! 0 and r! 1, we
have
r ! 0; Re½s0� < �1 ð53:1Þ

r ! 1; Re½s0� > �1 ð53:2Þ

The application of the residue theorem implies that the parameter s 0 is the zero of D(s). Denote the zeros of
D(s) located in the half planes Re[s] < �1 and Re[s] > �1 be sk and ~sk (k = 1,2, . . .), respectively, and
Re[sk] > Re[sk+1], Re½~sk� < Re½~skþ1�. From the calculations in Eqs. (52) and (53), the inverse integral path
C should lie in the regularity strip Re½s1� < Re½s� < Re½~s1� as shown in Fig. 3.

The main focus of this study is the thermo-electro-elastic behavior when r ! 0, for which the inverse
integral path is shown in Fig. 4. In Fig. 4, the path C1 is a semi-circle with infinite radius. It can be shown
that the integrals along path C1 are identically zero. From the residue theorem, the thermo-electro-elastic
fields for r ! 0 can be written as
rijðr; hÞ ¼
X
k

Re s½r̂ijðs; hÞr�s�2; sk� ð54:1Þ
Re[s]

Im[s]

1]Re[ 1 –<= ss 1~]Re[ 1 –>= ss

11
~]Re[ scss <=<

Fig. 3. The path of the inverse transform integral C.



Re[s]

ΓΓ1

s1 < Re[s] = c < -1

Im[s]

Fig. 4. The path of the inverse transform for r! 0.
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Diðr; hÞ ¼
X
k

Re s½D̂iðs; hÞr�s�2; sk� ð54:2Þ
For a specific eigenvalue mj of the heat conduction wedge, the number of poles sk in Eqs. (54) is finite due to
Eqs. (45.1) and (53.1). However, in general cases, there are infinite numbers of mj and each mj P 0 for finite
values of the temperature at the apex of the wedge. From the superposition principle, there are infinite num-
bers of sk. The stresses become singular if the zeros are in the interval �2 < Re[s] and the singularity order is
defined as (�s � 2). Also from Eq. (53.1), the singularity orders can be computed numerically by finding the
zeros of D(s) in the open strip �2 < Re[s] < �1.

In the most cases, sk are simple poles of r̂ij or D̂i. For the first eigenvalue s1, the singular thermo-electro-
elastic fields are
rðkÞ
ij ðr; hÞ ¼ lim

s!s1
½r̂ðkÞ

ij ðs; hÞr�s�2ðs� s1Þ� ¼ Krr�s1�2f ðkÞ
ij ðhÞ ð55:1Þ

DðkÞ
i ðr; hÞ ¼ lim

s!s1
½D̂ðkÞ

i ðs; hÞr�s�2ðs� s1Þ� ¼ KDr�s1�2gðkÞi ðhÞ ð55:2Þ
for real s1 and
rðkÞ
ij ðr; hÞ ¼ lim

s!s1
½r̂ðkÞ

ij ðs; hÞr�s�2ðs� s1Þ� þ lim
s!�s1

½r̂ðkÞ
ij ðs; hÞr�s�2ðs� �s1Þ�

¼ r�p1�2 cosðq1 ln rÞf
ðkÞ
ijc ðhÞ þ sinðq1 ln rÞf

ðkÞ
ijs ðhÞ

h i
Kr

Re

n
þ cosðq1 ln rÞf

ðkÞ
ijs ðhÞ � sinðq1 ln rÞf

ðkÞ
ijc ðhÞ

h i
Kr

Im

o
ð56:1Þ

DðkÞ
i ðr; hÞ ¼ lim

s!s1

h
D̂

ðkÞ
ij ðs; hÞr�s�2ðs� s1Þ

i
þ lim

s!�s1

h
D̂

ðkÞ
ij ðs; hÞr�s�2ðs� �s1Þ

i
¼ r�p1�2

nh
cosðq1 ln rÞg

ðkÞ
ic ðhÞ þ sinðq1 ln rÞg

ðkÞ
is ðhÞ

i
KD

Re

þ
h
cosðq1 ln rÞg

ðkÞ
is ðhÞ � sinðq1 ln rÞg

ðkÞ
ic ðhÞ

i
KD

Im

o
ð56:2Þ
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for complex s1 = p1iq1 with real p1 and q1. In Eqs. (55) and (56), Kr and KD, Kr
Re, K

r
Im, K

D
Re and KD

Im are
intensity factors and f ðkÞ

ij ðhÞ, gðkÞi ðhÞ, f ðkÞ
ijc ðhÞ, f

ðkÞ
ijs ðhÞ, g

ðkÞ
ic ðhÞ and gðkÞis ðhÞ are angular functions. Define
fhhðh1Þ ¼ fhhcðh1Þ ¼ ghðh1Þ ¼ ghcðh1Þ ¼ 1 ð57:1Þ

fhhsðh1Þ ¼ ghsðh1Þ ¼ 0 ð57:2Þ

for piezoelectric/piezoelectric and type B of composite/piezoelectric bonded wedges, and
fhhðh1Þ ¼ fhhcðh1Þ ¼ ghðh4Þ ¼ ghcðh4Þ ¼ 1 ð57:3Þ

fhhsðh1Þ ¼ ghsðh4Þ ¼ 0 ð57:4Þ

for type A of composite/piezoelectric bonded wedge, where h4 = (h1 � h3)/2.
6. Numerical results and discussion

The material properties considered in this study are given below:
PZT5H with z-axis polarization (Shang and Kuna, 2003):
s11 ¼ s22 ¼ 10.055� 10�12 m2=N; s33 ¼ 7.1163� 10�12 m2=N;

s12 ¼ �4.0295� 10�12 m2=N; s13 ¼ s23 ¼ �1.5694� 10�12 m2=N;

s44 ¼ 18.369� 10�12 m2=N; s14 ¼ s24 ¼ s34 ¼ 0;

g14 ¼ 20.681� 10�3 V m=N; g31 ¼ g32 ¼ �5.8256� 10�3 V m=N;

g33 ¼ 14.324� 10�3 V m=N; g11 ¼ g12 ¼ g13 ¼ g34 ¼ 0;

b11 ¼ 4.2943� 107 V2=N; b33 ¼ 4.5425� 107 V2=N; b13 ¼ 0;

a1 ¼ a2 ¼ 9.6384� 10�6 K�1; a3 ¼ 3.9634� 10�6 K�1; a4 ¼ 0;

k3 ¼ 2956.5 N C�1 K�1; k1 ¼ 0;

k11 ¼ 50 W K�1 m�1; k33 ¼ 75 W K�1 m�1; k13 ¼ 0
PZT-4 with z-axis polarization (Berlincourt et al., 1964; Ding et al., 2003):
s11 ¼ s22 ¼ 10.9� 10�12 m2=N; s33 ¼ 7.9� 10�12 m2=N; s12 ¼ �5.42� 10�12 m2=N;

s13 ¼ s23 ¼ �2.1� 10�12 m2=N; s44 ¼ 19.3� 10�12 m2=N; s14 ¼ s24 ¼ s34 ¼ 0;

g14 ¼ 39.4� 10�3 V m=N; g31 ¼ g32 ¼ �11.1� 10�3 V m=N; g33 ¼ 26.1� 10�3 V m=N;

g11 ¼ g12 ¼ g13 ¼ g34 ¼ 0;

b11 ¼ 7.66� 107 V2=N; b33 ¼ 8.69� 107 V2=N; b13 ¼ 0;

a1 ¼ a2 ¼ 1.923� 10�6 K�1; a3 ¼ 0.9355� 10�6 K�1; a4 ¼ 0;

k3 ¼ 3474.8 N C�1 K�1; k1 ¼ 0
The values of kij are assumed to be the same as PZT-5H because they cannot found in the existing
literature.

Graphite-epoxy with fiber orientation along z-axis (Wang and Crossman, 1977):
Ez ¼ 137.9 GPa; Ex ¼ Ey ¼ 14.48 GPa; mxy ¼ mzx ¼ mzy ¼ 0.21;

Gxy ¼ Gxz ¼ Gyz ¼ 5.86 GPa
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No thermal properties of graphite-epoxy can be found in Wang and Crossman (1977). In this paper, the
typical values of the thermal properties
Table
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Presen

Chue
a1 ¼ a2 ¼ 0.02� 10�6 K�1; a3 ¼ 20� 10�6 K�1; a4 ¼ 0;

k11 ¼ 1 W K�1 m�1; k33 ¼ 5 W K�1 m�1; k13 ¼ 0
are assumed. No electrical property is required because the graphite-epoxy is considered as a perfectly elec-
tric insulated body. The traditional Lekhnitskii formulation (Lekhnitskii, 1963) can be applied to the
graphite-epoxy.

The poling of the selected PZT�s and the fiber of the graphite-epoxy lie in the x–z plane and make an
angle b with the z-axis (see Fig. 2). For an arbitrary material orientation, the coordinate transformation
of the material constants must be made.
1
ress singularity orders (�s � 2) of the isotropic bonded wedges

descriptions Mat 1: E = 300 GPa, m = 0.3 Mat 1: E = 300 GPa, m = 0.2
Mat 2: E = 100 GPa, m = 0.3 Mat 2: E = 50 GPa, m = 0.3
h1 = 0�, h2 = 135�, h2 = �90� h1 = 0�, h2 = 150�, h2 = �165�

t �0.309215 �0.441223 + 0.037182i

aris (1974) �0.309215 �0.441223 + 0.037182i

2
ress singularity orders (�s � 2) of the graphite-epoxy bonded wedges

angle h1 = 0�, h2 = 90�, h3 = 180� h1 = 0�, h2 = 180�, h3 = 180�

orientation b1 = 45� b1 = 0�
b2 = �45� b2 = 90�

t �0.494309 �0.5
�0.0214846

and Liu (2001) �0.494309 �0.5
�0.0214846

3
ress singularity orders (�s � 2) of the piezoelectric/piezoelectric and graphite-epoxy/piezoelectric bonded wedges

type PZT-4/PZT-4
(crack in one material)

PZT-5H/PZT-4 Gr.-Ep./PZT-4 Gr.-Ep./PZT-4

angle h1 = 0�, h2 = 180�,
h3 = 180�

h1 = 0�, h2 = 90�,
h3 = 180�

h1 = 0�, h2 = 180�,
h3 = 180�

h1 = 90�, h2 = 180�,
h3 = 180�

or fiber
ntation

b1 = 0� b1 = 0� b1 = 90� b1 = 90�
b2 = 0� b2 = 180� b2 = 180� b2 = 180�

t �0.5 �0.537789 �0.5 + 0.0451570i �0.479321
�0.291115 �0.358844 + 0.0231108i
�0.142352

and Chen (2002) �0.5 �0.537789 �0.5 + 0.0451570i �0.479321
�0.291115 �0.358844 + 0.0231108i
�0.142352
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In this section, all the numerical results are computed from the specific temperature field of Eq. (46). It
has been shown that the singularity orders and angular functions of an elastic bonded wedge are indepen-
dent of the temperature field (Yang and Munz, 1994; Ma, 1995). Based on the present formulation, a
numerical examination reveals that the same conclusion can be made for a piezoelectric bonded wedge.

By letting the piezoelectric constants be zero, the present work can be decoupled into elasticity and elec-
trostatics (Chue and Chen, 2002). The stress singularity orders of the decoupled problems are compared
with some selected isotropic and anisotropic elastic material wedges, which have been widely investigated
in the past (Theocaris, 1974; Chen and Nisitani, 1992; Chue and Liu, 2001).

Table 1 lists the stress singularity orders of two isotropic bonded wedges. The perturbation method of
Young�s modulus is used to simulate an isotropic material (Lin and Hartmann, 1989). The stress singularity
orders obtained by the present approach and in Theocaris (1974) are exactly the same. The associated
z

x
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θ 3 = 180º
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Fig. 5. The variations of the singularity orders (�s � 2) of a PZT-5H wedge bonded to a PZT-4 half plane. The poling of the PZT-5H
and PZT-4 are along z- and -z-axes, respectively.
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Fig. 6. The variations of the singularity orders (�s � 2) of a half plane composed of PZT-5H and PZT-4 wedges.
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angular functions of the isotropic bonded wedges listed in Table 1 can be also obtained by the present
approach. Chen and Nisitani (1992) used the complex potential function conjunction with the eigenfunc-
tion expansion method to obtain the angular function of an isotropic bonded wedge. Numerical verification
of the computed angular functions has also been made by comparing the results obtained by Chen and
Nisitani (1992).

For the anisotropic wedge, the cases compared are listed in Table 2. The computed stress singularity
orders of these wedges are exactly the same as those obtained from Chue and Liu (2001).

Chue and Chen (2002) used the generalized Lekhnitskii formulation to obtain the singularity orders of
the piezoelectric and graphite-epoxy/piezoelectric bonded wedges for type A continuity conditions. The
cases compared between Chue and Chen (2002) and the present results for the piezoelectric bonded wedges
are listed in Table 3.

The consistent results from these reduced cases provide a good reason to trust the validity of the present
approach. What follows are some new findings about the singularities of the piezoelectric bonded wedge.
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6.1. PZT-5H/PZT-4 bonded wedge

Consider a PZT-5H wedge bonded to a PZT-4 half plane. The poling of the PZT-5H and PZT-4 are
along z- and �z-axes, respectively. The wedge angles are h1 = 0, h3 = 180� and h2 is a variable which ranges
from 0� to 180�. Fig. 5 plots the singularity orders (�s � 2) for type A and type B continuity conditions.
Chue and Liu (2001) have shown that for a crack existing at the interface between two anisotropic mate-
rials, the singularity order is complex and its real part is �0.5. In Fig. 5, the wedge becomes a crack existing
at the interface between two materials when h2 = 180�. The singularity orders are �0.614073, �0.5 and
�0.385927 for both types of continuity conditions. No complex order is found when h2 = 180�. It should
be noted that this conclusion does not hold for every type of piezoelectric bonded wedge for h2 = 180�. For
example, if the elastic constant s11 of PZT-5H is magnified to 150 · 10�12 m2 N and the other material con-
stants remain unchanged, the singularity orders for type A and B become �0.5 + 0.0454004i and �0.5,
respectively. Some researchers, such as Chue and Liu (2001); Scherzer and Kuna (2004), and Govorukha
and Kamlah (2004), have found that for a crack existing at the interface between two materials, the singu-
larity order is �0.5 + i�, where � is a real number. These findings are the same as the present results. When
h2 = 0�, the wedge becomes a PZT-4 half plane. For type A continuity conditions there would be no sin-
gularity. However, for type B, there is a �0.5 singularity. This phenomenon results from the assumptions
made about the boundary edges and interface, i.e. electrically insulated on the free edge and electrically
grounded on the interface. The apex of the wedge becomes a mixed boundary value problem of the elec-
trostatics and the singularity order is �0.5. The order resulting from the mixed point is always stronger
than �0.5 for every h2.

Fig. 6 plots the singularity orders of a half plane consisting of PZT-5H and PZT-4 wedges. In this exam-
ple, h2 + h3 = 180� and h1 = 0. The poling of the PZT-5H and PZT-4 is along z- and �z-axes, respectively.
When h2 = 0 or h3 = 0, the wedge becomes a half plane and the singularity order is 0 for type A continuity
conditions and �0.5 for type B. The first order for type B is always greater than that for type A.

Consider a PZT-5H/PZT-4 wedge bonded to form a half plane with wedge angles h2 = h3 = 90� and
h1 = 0. The poling of PZT-4 is along �z axis. Fig. 7 shows the variations of (�s � 2) under different poling
direction b of PZT-5H. For type B continuity conditions, the singularity orders are the same as under pol-
ing directions b and (b + 180�), i.e., opposite poling directions. The reoccurrence of singularity orders re-
sults from the electrically grounded condition at the interface. When the poling direction is reversed, the
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elastic constants sij and impermittivities bij remain unchanged and the piezoelectric constants gij change by
multiplying �1. The singularity orders of type A in Fig. 7 are weaker than those in Fig. 6. For type B,
Re[�s � 2] is weaker than �0.1 for most b. Since both the two materials are right-angle-wedges, the
phenomenon that Re[�s � 2] = �0.5 is not found for type B. The complex orders for both types are found
for some b.

Consider a debonded PZT-5H/PZT-4 junction with wedge angles h2 = h3 = 180�. The orientation of the
interface can be arbitrary. The poling orientation angles b of the PZT-5H and PZT-4 are 0� and 180�,
respectively. The variations of singularity orders (�s � 2) versus h1 are shown in Fig. 8. In the case of type
A continuity conditions, the debonded junction can be considered as a crack existing in one material with
traction free and electrically open boundary conditions at the crack faces when h1 = �180� or 180� and the
order is �0.5. For h1 5 ±180�, the first order is always stronger than �0.5. For h1 = 0, the wedge becomes
a crack existing at the interface between two half planes and the orders are �0.38593, �0.5 and �0.61407.
In the case of type B, the singularity orders are �0.75, �0.5 and �0.25 when h1 = �180� or 180�. For such
h1 the electrical boundary conditions are electrically grounded and insulated at the crack faces. The singu-
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Fig. 9. The variations of the angular functions corresponding to the strongest order of a right-angle PZT-5H wedge bonded to a PZT-4
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PZT-4 are 0� and 180�, respectively.
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larity orders for h1 = �180� or 180� are exactly the same as the crack problem in one elastic material when
clamped and traction free at the crack faces. For h1 = 0, the orders are �0.38592, �0.5 and �0.61408,
which are slightly different from type A under the same h1 The first order for type B is always stronger than
that for type A. Furthermore, no complex order is found for either type.

Consider a right-angle PZT-5H wedge bonded to a PZT-4 half plane. The poling orientation angles b of
PZT-5H and PZT-4 are 0� and 180�, respectively. The singularity orders of this piezoelectric bonded wedge
are �0.537789, �0.291115, �0.142352 for type A and �0.557356, �0.406894, �0.120547 for type B. The
angular functions of the piezoelectric bonded wedge can be computed numerically. Fig. 9 shows the angular
functions corresponding to the strongest order. It is observed that all the angular functions are continuous
across the interface and vanish at the boundary edges except gh(h) at the interface for type B.
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6.2. Graphite-epoxy/PZT-4 bonded wedge

Consider a graphite-epoxy wedge bonded to PZT-4 half plane as shown in Fig. 10. The x-axis is placed
along the interface (h1 = 0) and the wedge angle of PZT-4 is h3 = 180�. The material orientations of the
graphite-epoxy and PZT-4 are along x and �z-axes, respectively. The wedge angle h2 is a variable that
ranges from 0� to 180�. For type A, a complex order is found when h2 approaches 180�. Chue and Chen
(2002) have studied type A continuity conditions for this example. There are some slight differences in
the material properties of the graphite-epoxy between Chue and Chen (2002) and this paper. The overall
tendencies of the two studies are the same. For type B, no complex order is found and there exists an order
stronger than �0.5 for every possible h2. Again this phenomenon results from the mixed point of the elec-
trical boundary conditions.

Fig. 11 shows the singularity orders of a half plane consisting of graphite-epoxy and PZT-4 wedges. The
x-axis is placed along the interface and h2 + h3 = 180�. The material orientation angles b of graphite-epoxy
and PZT-4 are 90� and 180�, respectively. For type A, the singularity order is always weaker than �0.017
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Fig. 12. The variations of the singularity orders (�s � 2) of a debonded graphite-epoxy/PZT-4 junction for (a) type A and (b) type B.
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and disappearance of the singularity is observed for 180� > h2 > 139� and 119� > h2 > 42�. For type B, the
regions of disappearance of the singularity are 180� > h2 > 163� and 119� > h2 > 90�. When h2 < 90�, an
order due to mixed point is found. When h2 = 0, the order becomes �0.5. Contrary to Fig. 6, the phe-
nomenon of the mixed point does not occur when h2 > 90� because the electrostatic properties of
graphite-epoxy are ignored, i.e., graphite-epoxy is modeled as a perfectly electric insulated body.

Consider a debonded graphite-epoxy/PZT-4 junction with wedge angle h2 = h3 = 180� and 180� >
h1 > �180�. The material directions of the graphite-epoxy and PZT-4 are along the x and �z-axes, respec-
tively. The variation of the singularity orders are shown in Fig. 12. Chue and Chen (2002) have studies a
similar wedge for type A boundary conditions. In Chue and Chen�s study, the fiber of the graphite-epoxy is
parallel to the bonded surface while the poling of PZT-4 is perpendicular to the bonded surface. Although
there are some differences between these two studies, the overall tendencies are quite similar. It is concluded
that if the wedge angle of the graphite-epoxy is smaller than that of the PZT-4, the singularity order would
be weaker.
-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180
θ (degree)

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

A
ng

ul
ar

 F
un

ct
io

ns

θ(degree)

A
ng

ul
ar

 F
un

ct
io

ns

fqqc          
fqqs          
frqc          
frqs          
gqc          
gqs          

)(θθcf
)(θθsf
)(θcrf
)(θsrf
)(θcg
)(θ

θ
θ
θ
θ
θ

θsrg

z

x
θ 2 = 180º

θ 3 = 180º

Mat 1: Gr.-Ep.
(β = 90º)

Mat 2: PZT-4
(β = 180º)

z

x
θ 2 = 180º

θ 3 = 180º

Mat 1: Gr.-Ep.
(β = 90º)

Mat 2: PZT-4
(β = 180º)

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

fqq
frq
gq

fθθ (θ)

frθ (θ)

gθ (θ)

(a)

(b)

Fig. 13. The variations of the angular functions corresponding to the strongest order of a debonded graphite-epoxy/PZT-4 junction
for (a) type A (�s � 2 = �1.5 + 0.451570i) and (b) type B (�s � 2 = �0.551993). The material orientation angles b of graphite-epoxy
and PZT-4 are 90� and 180�.



980 C.-D. Chen / International Journal of Solids and Structures 43 (2006) 957–981
In Fig. 12, there are three orders when h1 = 180� for type B. When h1 = 0, there is only one order �0.5.
For all possible h1 the first singularity order is always stronger than �0.5. The strongest order is �0.75
when h1 = 180�. In addition, if the wedge angle of graphite-epoxy is smaller than PZT-4, the singularity
order would be stronger, which is contrary to type A.

Consider a crack existing at the interface of the graphite-epoxy and PZT-4 half planes. The material ori-
entation angles b of the graphite-epoxy and PZT-4 are 90� and 180�, respectively. The wedge angles are
h1 = 0� and h2 = h3 = 180�. The computed singularity orders of the debonded graphite-epoxy/PZT-4 junc-
tion are �0.5 + 0.451570i for type A and �0.551993, �0.5, �0.448007 for type B. Fig. 13 shows the angular
functions corresponding to the first order of the debonded graphite-epoxy/PZT-4 junction. Since the graph-
ite-epoxy is considered as a perfectly electric insulated body, there is no angular function of electric dis-
placement inside it. Similar to Fig. 9, all the angular functions vanish at the boundary edges in Fig. 13.
The angular functions of stresses and electric displacements are continuous across the interface for type
A. For type B, the angular function of electric displacement has a jump across the interface.
7. Conclusions

In this paper, the thermo-electro-elastic fields of a piezoelectric bonded wedge have been analyzed by the
generalized Lekhnitskii formulation conjunction with the Mellin transform. Based on the potential theory
for the wedge-shaped region, the general form of the temperature change has been presented as the partic-
ular solution of the Lekhnitskii formulation.

The boundary edges of the wedge are traction free and electrically insulated. Two types of continuity
conditions, namely type A and type B have been investigated in this study. From the inversion of the Mellin
transform, the singularity orders of the wedge have been computed numerically through solving the poles of
the transformed electro-elastic fields. The angular functions are also computed numerically. Compared with
type A, the type B condition may induce an order stronger than �0.5 due to the mixed boundary value
problem of the electrostatics. The results of this study provide a guide to the reduction or even disappear-
ance of the singularity in the piezoelectric wedges.
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